The results are presented as means ± standard deviation, median with interquartile range (IQR) for most of the continuous variables and number (percentages) for categorical variables. Univariate analysis was performed by using a chi-square test to assess the difference among the proportions. An independent sample t-test was used to compare the difference of means if the independent variables followed normal distribution, otherwise the Mann–Whitney U-test (non-parametric) was performed for H. pylori positive and negative groups. Spearman’s rho was used for correlation analysis between vitamin Btwelve levels or folate levels and homocysteine concentration. A p-value < 0.05 was considered as statistically significant. All p-values were two sided. The Statistical Package for Social Science SPSS (Release 11.5.0, standard version, copyright© SPSS; 1989?2002) was used for data analysis.
A total of one hundred and thirty two patients (85 males and 47 females) fulfilling the inclusion criteria were enrolled in the study. The mean age of the study group was 40.3 ± 11.5 years (range 19–72 years). H. pylori was present in 81 (61.4%) patients, while it was absent in 51 (38.6%). There were no significant differences in age and gender of H. pylori positive and negative patientsplete biochemical data were available for 130 patients. Analysis of these data revealed that serum levels of vitamin B12, folate and homocysteine were not significantly different between H. pylori positive and H. pylori negative patients (Table 1). The mean serum concentration of total homocysteine in male patients was significantly higher than that of female patients (17.3 ± 9 vs. 14 ± 7.2 ?mol/L; p = 0.02). However, in H. pylori positive patients a statistically significant difference was observed in homocysteine concentrations between males and females (p = 0.008; Table 2). Correlation analysis of total homocysteine concentration vs. age indicated no significant relationship (p = 0.77).
Percent deficiencies of B12 and folate in patients with FD were found to be 23.1% and 34.6%, respectively. However, no difference was found between the proportions of the deficiencies of these two vitamins in H. pylori positive and H. pylori negative patients (p > 0.05; Table 3).
Hyperhomocysteinemia was present in 46.2% of all patients. However, in patients with H. pylori infection, hyperhomocysteinemia was found in 37 (46.2%) of them as compared to 22 (44%) in the H. pylori negative group (p = 0.82). Correlation analysis (Spearman’s rho) indicated that serum B12 levels were inversely correlated with serum homocysteine in these patients with FD (rho = ?0.192; p = 0.028). 12 deficiency and serum levels of homocysteine was observed between the H. pylori positive and H. pylori negative patients (Table 4).
B12 deficiency had been reported to be 6.6% and 9.7% in the normal healthy adult population of Pakistan, which is mostly non-vegetarian [7–9]pared to this, there was a high proportion of B12 deficiency (23.1%) in our patients with FD. Other studies from Pakistan and neighboring countries have also shown a high prevalence of B12 deficiency in the apparently healthy population [19, 20]. Only two studies in Asia have been conducted which demonstrate B12 deficiency in patients with upper gastrointestinal symptoms [21, 22]. These two studies attributed B12 deficiency to H. pylori infection. However, our results did not show similar involvement in Pakistani patients with dyspepsia.
Quite high amounts of homocysteine was in past times reported from inside the suit adult communities for the Pakistan and neighboring Asia [8, 9, 19, 23, 24] that have nutritional deficit and you may lead contaminants are probably the significant determinants. In the modern data, hyperhomocysteinemia try used in 46.2% from clients that have FD. This is certainly increased proportion as compared to thirty two% when you look at the an it seems that compliment population investigation held in Karachi, Pakistan .